Fighting brain cancer at its root
海外直播b站 researchers identify proteins that drive cancer stem cells. Targeting and supressing a particular protein called galectin1 could provide a more effective treatment for glioblastoma, in combination with radiation therapy.
Due to its resistance to therapy, glioblastoma is the most common and aggressive cancerous brain tumour in adults. It grows fast and spreads quickly. While treatments such as surgery, radiation, and chemotherapy can help ease symptoms for a few months, in most cases tumour cells regrow after treatment and the cancer recurs.
According to the researchers, no matter how low the weeds are cut, if the roots are not pulled out, the weeds will just grow back.
Getting to the root of the problem
Among all cancerous cells, some act as stem cells that reproduce themselves and sustain the cancer, much like normal stem cells typically renew and sustain our organs and tissues, say the researchers. By targeting the way the cells operate, they discovered a new way to disrupt the production of new tumours.
鈥淲hat we found was really astonishing for us. After we inhibited the galectin1 protein, the brain tumours simply didn鈥檛 grow for several months,鈥 says Arezu Jahani-Asl, an Associate Professor of Medicine at 海外直播b站. 鈥淭o improve patient response to therapy, we must exploit these newly identified vulnerabilities in cancer stem cells.鈥
The researchers discovered that a protein called galectin1 interacts with another protein called HOXA5 to control the genetic programs that drive cancer stem cell behaviour. By supressing galectin1 in preclinical models, they found a significant improvement in tumour response to radiation therapy, resulting in expanded lifespan.
The researchers also analyzed patient databases and found that glioblastoma patients with low expression of galectin1 and HOXA5 proteins had the best prognosis. Together, these proteins along with another called STAT3 activate mechanisms that promote a particularly aggressive type of glioblastoma.
Paving the way for new therapies
The discovery sheds light on the mechanisms that regulate cancer stem cells. The findings provide evidence that targeting galectin1 protein, in combination with radiation therapy, can pave the way for future clinical trials to treat glioblastoma tumours. The next step is to compare the effectiveness of different approaches to supressing the galectin1 and HOXA5 complex in the brain, with advances in gene therapy through CRISPR technology.
About this study 鈥淭ranscriptional Control of Brain Tumour Stem Cells by a Carbohydrate Binding Protein鈥 by Ahmad Sharanek, Audrey Burban, Aldo Hernandez Corchado, Ariel Madrigal, Idris Fatakdawala, Hamed Shateri Najafabadi, Vahab D Soleimani, and Arezu Jahani-Asl was published in . DOI: |
About 海外直播b站
Founded in Montreal, Quebec, in 1821, 海外直播b站 is Canada鈥檚 top ranked medical doctoral university. 海外直播b站 is consistently ranked as one of the top universities, both nationally and internationally. It鈥痠s a world-renowned鈥痠nstitution of higher learning with research activities spanning two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. 海外直播b站 attracts students from over 150 countries around the world, its 12,800 international students making up 31% of the student body. Over half of 海外直播b站 students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.